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A  new  image  analysis  strategy  is introduced  to determine  the  composition  and  the  structural  characteris-
tics of  plant  cell  walls  by combining  Raman  microspectroscopy  and  unsupervised  data  mining  methods.
The  proposed  method  consists  of three  main  steps:  spectral  preprocessing,  spatial  clustering  of  the  image
and finally  estimation  of  spectral  profiles  of  pure  components  and  their  weights.  Point  spectra  of Raman
maps  of  cell  walls  were  preprocessed  to  remove  noise  and  fluorescence  contributions  and  compressed
with  PCA.  Processed  spectra  were  then  subjected  to  k-means  clustering  to  identify  spatial  segregations  in
the images.  Cell  wall  images  were  reconstructed  with  cluster  identities  and  each  cluster  was  represented
by  the  average  spectrum  of  all  the  pixels  in  the cluster.  Pure  components  spectra  were  estimated  by  spec-
tral entropy  minimization  criteria  with  simulated  annealing  optimization.  Two  pure  spectral  estimates
ignin
urve resolution
iomass

that  represent  lignin  and  carbohydrates  were  recovered  and  their  spatial  distributions  were  calculated.
Our approach  partitioned  the  cell  walls  into  many  sublayers,  based  on  their  composition,  thus  enabling
composition  analysis  at subcellular  levels.  It  also overcame  the  well  known  problem  that  native  lignin
spectra  in  lignocellulosics  have  high  spectral  overlap  with  contributions  from  cellulose  and  hemicellu-
loses,  thus  opening  up new  avenues  for  microanalyses  of  monolignol  composition  of  native  lignin and
carbohydrates  without  chemical  or mechanical  extraction  of  the  cell wall  materials.
. Introduction

The plant cell wall is a complex composite of an intercon-
ected network of cellulose cross-linked by hemicelluloses. Lignin,

 phenolic polymer, is also present in many secondary cell walls,
roviding additional structural support and recalcitrance to degra-
ation. Interest in harvesting cellulose for biofuels has renewed the
ocus on structural and compositional details of plant cell walls. The
atural recalcitrance of lignocellulosics, however, has been a major
bstacle to efficient conversion of cellulose into fermentable sugars
1,2]. New analytical tools can play an important role, by gaining
nowledge of chemical, structural and spatial insights of plant cell
alls, to facilitate the advancement of successful biomass decon-
truction as well as to improve our basic knowledge of plant cell
alls.
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© 2011 Elsevier B.V. All rights reserved.

Raman microspectroscopy has been successfully employed to
probe many important structural and compositional aspects of the
plant cell wall [3–9]. However, current spectral image analysis
and reconstruction methods have been limited to peak intensity
or peak integration with few exceptions [10], thus making sub-
optimal use of the multiplexing nature of Raman spectroscopy.
In fact, the detailed characterization requires implementation of
vigorous multivariate methods to untangle the chemically hetero-
geneous and structurally complex plant cell wall. In this article,
we demonstrate a new non-supervised image analysis strategy
which in combination with Raman (or other spectroscopies) can be
employed to elucidate chemical, structural and spatial information
of the plant cell wall.

Spectral images of plant cell walls present a stern challenge to
multivariate data mining methods for the following reasons:

(1) A multi-component system is present at any given image
pixel spectrum and often the exact number of components is

unknown.

(2) Pure components spectra and their weight are unknown. The
spectrum of an isolated component (e.g. lignin) would be differ-
ent from that in the native environment due to loss of hydrogen

dx.doi.org/10.1016/j.aca.2011.06.021
http://www.sciencedirect.com/science/journal/00032670
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bonds, change of three-dimensional configuration and possible
chemical alteration during extraction.

3) Owing to similarities of monomers, cellulose and hemicellu-
loses have similar spectral features and therefore high spectral
overlap.

4) Pure components could be spatially collinear at the submicron
to micron level, providing identification of them as independent
entities is difficult.

5) Auto-fluorescence from impurities as well as components such
as lignin contributes to the noise and shape of the background
significantly in the case of Raman imaging.

6) Raman spectra have poor signal-to-noise ratio (S/N) due to
practical constraints such as short integration time that is
required to avoid thermal and photo damage to the sample.

As a consequence, supervised calibration methods (e.g. par-
ial least squares [11]) and classification methods (e.g. discrimant
nalysis [12]) are unsuitable for multivariate analysis of cell wall
mages. Supervised methods are based on a priori knowledge (i.e. a
training set” with known mixtures of the components of interest)
f the system to build a reliable calibration model. The prediction
ccuracy of the model depends on the extent of the similarity of
he training set to the actual system. The aforementioned reasons

ake it difficult to build a reasonable training set that captures the
ssence of the chemical and structural complexity of the system.

Alternatively, blind (unsupervised) data analysis methods need
ittle or no a priori information about the system but progress by
xtracting all necessary information from the system itself. Here we
escribe a method that combines k-means clustering and spectral
ntropy minimization with Raman microspectroscopy to elucidate
ompositional and structural details of plant cell walls.

. Computational methodology

The image analysis procedure consists of three main steps,
1) spectral preprocessing (2) stepwise clustering and (3) estima-
ion of spectral profiles of pure components and their weights.

 general discussion of the implementation of the procedure is
resented in this section. The process starts with conditioning of
he spectral images for the subsequent steps. Generally poor (low
ignal-to-noise ratio) Raman spectra were first subjected to wavelet
ransformation to mitigate the noise contribution. Wavelet analy-
is has been shown to remove noise contribution with minimal
eterioration to the signal by decomposing the original spectrum

nto a high frequency part (“details”) and a low frequency part
“approximations”) with a preselected wavelet function. The high
requency component contains the noise contribution to the sig-
al while the low frequency component carries the information
ontent. The low frequency component is further decomposed in
ubsequent steps and this procedure is repeated until an appropri-
te level of separation between noise and signal has been achieved.
he noise-free signal is constructed by mixing appropriate amounts
f high and low frequency coefficients at each level. A detailed dis-
ussion of noise removal with wavelet decomposition can be found
n the following references [13,14].  Denoised spectra were then
onverted into their second derivatives with the Savitzky–Golay
econd derivative (SGSD) method to remove the fluorescence con-
ribution. The second derivative of a spectrum diminishes the slow
hanging fluorescence contribution while preserving the signa-
ures of Raman peaks [15]. The Savitzky–Golay procedure itself
as been shown to remove noise (by means of polynomial fitting)

hile calculating second derivatives. However, effective removal of
oise requires applying larger filter windows which in turn would
roaden the Raman features and result in the loss of finer spectral

nformation content. By contrast, noise filtering with wavelet prior

̂
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to the SGSD gives second derivative spectra with low noise while
retaining finer Raman features. Next, the second derivative spectral
matrix was  decomposed with principal component analysis (PCA)
to compress the data matrix into a much smaller size. PCA further
removes noise and other undeterministic contributions while con-
serving the systematic variance in the system [16,17].  The reduced
PCA matrix was then introduced to the second step, the stepwise
clustering with k-means clustering. k-Means cluster analysis pro-
vides an unsupervised approach to cluster objects into different
groups, provided that the user defines the desired number of clus-
ters, N [18,19]. The k-means algorithm then puts N centroids in
the space represented by the objects and assigns all the objects
to the closest centroid. The position of each centroid is recalcu-
lated after all the objects are assigned and this step is repeated
until centroids no longer move. k-Means cluster analysis has been
shown to find suboptimal solutions to the partition. This was over-
come by repeating the analysis with different starting points and
retaining the solution with the lowest sum of squares. At first, the
PCA matrix was partitioned into two clusters to separate cell wall
spectra from the spectra that arise from the lumen. Next, the sec-
ond derivative spectra of cell walls were separated from those of
lumen and latter set was discarded. The former set was subjected
first to PCA decomposition and then k-means clustering with the
desired number of classes. The cell wall image was  reconstructed
at this stage with cluster identities (instead of peak intensity or
peak area) to identify and visualize the natural spatial segregation
of the image. This stepwise clustering enables the identification of
different sublayers in the cell walls of the images. The final step
involves identifying and quantifying the factors that contribute to
the partitioning of the image. Spectral identities of the clusters were
calculated by averaging all the spectra of each cluster. These aver-
age spectra were subsequently introduced into the final step of pure
spectral estimation.

Spectral entropy minimization methodology [20,21] can be used
to recover pure components spectra without assuming their func-
tional forms. The main advantage of the entropy minimization
method is that no knowledge of the exact number of pure compo-
nents and/or estimation of their spectral weights is required. Both
these parameters are difficult to obtain for cell wall images. The
entropy minimization method relies on the fact that pure spectra
have lower entropies (as defined later) than their mixtures. There-
fore, the entropy minimization method aims at finding the spectral
profile that has the smallest entropy in space that is defined by the
mixture spectra. A brief discussion of the entropy minimization
procedure is given below. First, the average spectra matrix (Dk×v,
where k is the number of average spectra and v is the number of
wavelengths) was decomposed with singular value decomposition
(SVD) [22] as shown in Eq. (1).

Dk×v = Uk×k × Sk×v × VT
v×v (1)

Next, Vv×v was reduced to retain only physically meaningful j
row vectors (Vj×v where j ≤ k � v. An important attribute of rows
of Vj×v is that different linear combinations of those can recreate all
the mixture spectra in the system as well as the spectra of the pure
components. Therefore, the entropy minimization technique pur-
sues the weighting coefficients vector that multiplies the rows of
Vj×v to obtain the best estimates of pure component spectra that
have lower entropies than their mixtures. Accordingly, the first
pure spectral estimate (â1×v) is calculated by a linear combination
of j vectors of Vj×v weighted by j random numbers (T1×j) between
−1 and 1 as shown in Eq. (2).
a1×v = T1×j × VT
j×v (2)

â1×v was  then minimized and refined against a spectral entropy
based objective function Obj (Eq. (3)). The first term of the Obj is the
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hannon entropy where hv is a probability distribution as defined
n Eq. (4).

bj = −˙vhv ln hv + p (3)

v =
∣∣d(âv)/dvn

∣∣
˙

∣∣d(âv)/dvn
∣∣ (4)

(â1×v, ĉk×1) = F(â1×v) + F(ĉk×1) (5)

In general, first, second or fourth derivatives (i.e. n = 1, 2 or 4) are
sed to calculate hv. The second term P is a penalty function (Eq. (5))
hat accounts for constraints such as non-negative spectral weights
F(ĉk×1)) and non-negative intensity of the spectra (F(â1×v)).

The optimum solution is found by checking the value of the Obj
unction against a preselected threshold and if the criteria have not

et, a new T1×j vector is generated using an optimization criterion
uch as stimulated annealing (SA) until optimization converges.

Simulated annealing is a stochastic domain search technique
hat has been proven to find the global minimum in rough terrain
here derivative based methods fail [23,24]. SA is inspired by the
atural cooling (annealing) process in nature where slow cooling
elaxes the system to the lowest energy state while faster cool-
ng traps the system in a higher entropy configuration. SA starts
earching the domain at a random point and navigates through the
errain making both downhill and uphill (with acceptance probabil-
ty less than 1) movements. Temperature is reset periodically and
he system is allowed to cool again. These allowed uphill moves
nd re-annealing help the algorithm to escape local minima and
each the global solution.

Pure spectral estimation of multiple components in a system can
e achieved by different approaches. A discussion of these methods
nd further discussion of the implementation of spectral entropy
inimization methodology can be found in the literature [25–27].
e have recovered different pure spectral estimates as follows. The

rst pure spectrum was recovered by minimizing the entropy of the
ntire spectrum. Successive pure spectral estimates were obtained
y focusing on different regions of the spectrum and therefore
voiding the necessity to subtract a pure spectral estimate from
he mixture spectra before recovering the next pure spectral esti-

ate which can be cumbersome for highly overlapped component
ixtures with significant fluorescence contribution.

. Materials and method

.1. Samples and sample preparation

Air-dried woody samples came from eight-month-old, green-
ouse grown Populus trichocarpa (Black cottonwood). 50 �m thick
ross-sections of hydrated stems were cut with a microtome (Leica
M2265) and placed in D2O on a microscope glass slide and covered
ith a glass cover slip (170 �m thick). The edges of the cover slip
ere sealed onto the glass slides to prevent evaporation of D2O.3.2

.2. Data collection

Two-dimensional spectral maps (40 �m × 40 �m)  were
cquired with a confocal Raman microscope (WITec, alpha300
, fiber/pinhole diameter = 100 �m),  which is equipped with a
iezoelectric scan stage. A 100× oil immersion microscope objec-
ive (Nikon, NA = 1.40, WD = 0.13 mm)  and a laser in the visible
avelength range (� = 532 nm)  were used in the measurements.

he linearly polarized laser light was focused with a nearly

iffraction-limited spot size onto the samples and the Raman

ight was detected by a CCD camera (Andor, DV401-BV) behind
 grating (600 grooves mm−1) spectrometer (WITec, UHTS 300)
ith a spectral resolution of ∼4 cm−1. The laser power on the
a Acta 702 (2011) 172– 177

samples was approximately 10 mW.  The lateral resolution of the
system was determined via a knife-edge measurement within
the sample fluid cell to be 300 nm,  which is near the theoretical
limit (0.61�/NA ≈ 230 nm). Sample areas of interest were mapped
by raster scanning in 200-nm steps with an integration time of
200 ms  per spectrum, resulting in 40,000 point spectra per image.
Results for each sample were obtained in triplicate to ensure
reproducibility.

3.3. Data analysis

All calculations were executed with built-in and home-written
codes in MatLab 7.9 platform. A sub-spectral region of the 40,000
noisy spectra that span from 750 cm−1 to 3300 cm−1 was  selected
for the data analysis. This data matrix was denoised with a
Daubechies family level six (‘db6’) wavelet at decomposition level
two  with level dependent noise filter. Denoised spectra were then
converted into their normalized second derivative spectra with
Savitzky–Golay second derivative filter with 21-pixel (∼80 cm−1)
window to remove the fluorescence contribution. Second deriva-
tive spectra were then decomposed with PCA to compress the data
matrix and three principal components were retained based on
their captured variance values and the shape of the loading vec-
tors. Total variance captured by the PCA analysis was between
92% and 95% for each data set. The PCA scores matrix was then
clustered into two  groups with k-means clustering based on the
cosine angle between spectra to identify lumen spectra from the
rest and lumen spectra were removed from further analysis. Sec-
ond derivative spectra of the cell wall spectra were used for PCA
(with 10 PCs) decomposition again but only the fingerprint region
of 750–1800 cm−1 was used. The new PCA matrix was used for k-
means clustering with ten clusters. The k-means clustering step
was  repeated for 1000 times with different initial centroids to avoid
suboptimal partition and the solution with lowest sum of squares
error was  retained. Spectral identities of the clusters were found by
calculating the average spectra. These average spectra were further
refined by removing fluorescence contribution by fitting the base-
line into a quadratic function. A lower order polynomial was chosen
to avoid over-fitting and hence over-subtraction of the baseline. The
resultant spectra were used for spectral entropy minimization to
find the underlying simpler patterns with simulated annealing with
an objective function defined in Eq. (3).  The initial temperature in
the SA algorithm (Genetic Algorithms and Direct Search Toolbox of
MatLab 7.9) was set to 10, the annealing function was  set to fast
annealing and temperature was  updated exponentially. The first
spectral recovery (lignin spectrum) was achieved minimizing the
entropy of the entire spectral region from 750 cm−1 to 1800 cm−1.
The second spectrum (carbohydrate spectrum) was recovered by
minimizing the entropy in the region from 750 cm−1 to 1400 cm−1.

4. Results and discussion

Fig. 1a shows a chemical image of xylem cells of wild type
P. trichocarpa which has been constructed by integrating the CH
stretching region (with WITec 1.94 software) at each pixel. Fig. 1b
shows a selected area (as shown by the rectangle in Fig. 1a) of the
reconstructed image with 10 clusters after the first two  steps (i.e.
spectral preprocessing and stepwise clustering) of the procedure
described in the Section 2. There are eight sublayers of the cell
wall structure including the region of the lumen in the selected
area of Fig. 1b (the other two clusters occurred outside the selected

area of Fig. 1b). It should be noted here that no spatial information
were used during the data analysis and therefore the systematic
and symmetrical spatial arrangement of the clusters is self-
confirmatory of the fact that our procedure is indeed finding natural
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ig. 1. Confocal Raman image of xylem cells of wild type P. trichocarpa: (a) CH inten
a)  with 10 clusters. Colors in (b) are arbitrary and provide visual contrast of the clu
amella, S1 – S1 layer, S2 – S2 layer, G – G layer).

ompositional segregations in the cell wall. The number of clusters
an be increased or decreased to construct finer or coarser images
s desired. However, the maximum number of clusters would be
ltimately determined by the S/N ratio of the spectra and/or the
umber of natural clusters in the image. The reconstructed image
isplays different layered structures for individual cells. Three cells

n the lower half of Fig. 1b have two additional layers (green and
lue) which are absent in the top cell. Spectral identities (aver-

ge spectra) of these clusters are shown in Fig. 2. Although it is
ossible to work with individual spectra at each pixel to estimate
ure spectral profiles, provided that computer power is sufficient,
he S/N enhancement achieved by averaging thousands of similar

ig. 2. Average cluster spectra (lumen excluded). Spectra were vertically offset for
larity. Colors of the spectra correspond to different cell wall layers with the same
olor in Fig. 1b. Inset: Two representative original Raman spectra of the cell wall
ith significant noise contribution.
age (WITec 1.94 software) and (b) reconstructed image of the marked rectangle in
 Most significant layers of the cell wall are indicated (CC – cell corner, ML  – middle

spectra together brings out the smaller features above the noise
floor that in turn will yield better convergence of the optimization
algorithm. It is also noteworthy that cell wall images are expected to
be spatially sparse (i.e. repetition of similar information in space or
spatial redundancy) and therefore analysis of individual spectra at
each pixel instead of average spectra of clusters may  not reveal any
additional information but requires much longer computational
time. A quick inspection of the average spectra shows significant
changes in the relative intensity of the peak at ∼1600 cm−1 com-
pared to peaks at 1090–1130 cm−1. Two of the spectra that have
been recovered from the spectral entropy minimization procedure
are shown in Fig. 3 and peak assignments of those recovered spec-
tra are shown in Table 1 in the Supporting Information. Indeed,
the assignment of the peaks in the recovered spectra to known
vibrational modes of extracted and/or pure lignin and cellulose
spectra in literature [28–31] confirms that our procedure has reli-
ably estimated those spectra. One spectrum (red in Fig. 3) carries
the characteristic 1590–1670 cm−1 peak envelope which has been
routinely used to quantify the lignin contribution and the rest of the
spectrum agrees well with the reported vibrational modes of the
isolated pure lignin spectra reported in the literature. The recovery
of other major peaks of lignin (e.g. 1464 cm−1, 1332–1380 cm−1
(multiple peaks), 1277 cm−1 and 1150 cm−1) allows us to detect
monolignol (monomer units of lignin) composition of native lignin
in situ without ambiguity which is not possible with traditional data

Fig. 3. Two pure spectral estimates recovered by spectral entropy minimization
(Red  – estimated lignin spectrum, Blue – estimated carbohydrate spectrum). Spectra
have been normalized to one at the tallest peak for comparison. (For interpretation
of  the references to color in this figure legend, the reader is referred to the web
version of the article.)
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ig. 4. Relative lignin (left) and carbohydrate (right) distributions across the cell wal
he  cell wall. Carbohydrate content changes by approximately factor of two across m

nalysis methods because of significant spectral overlap with car-
ohydrate signals. Lignin composition/content plays an important
ole in biomass degradation as it has been found to be related to the
ellulose sachcharification yield. Producing plant phenotypes with
ltered lignin content/composition is therefore regarded as a viable
ath to overcome cell wall recalcitrance [32,33]. We  have demon-
trated the ability of our method to determine and distinguish
ative lignin composition of different plant species in situ without
hysical extraction in a separate communication [34]. In particu-

ar, we determined the composition/chemistry of native lignin of
oplar, Arabidopsis and Miscanthus as well as a change in lignin
omposition upon transgenic suppression of 4-coumarate-CoA lig-
se (Ptr4CL3) in P. trichocarpa.

The second retrieved estimated pure spectrum has character-
stic peaks of carbohydrates, both cellulose and hemicelluloses.
patial segregation or spatially distinct distribution patterns of car-
ohydrates and lignin across the cell walls allows us to recover
ure lignin spectra without spectral contamination from the car-
ohydrate Raman signals, rendering the structural and quantitative
nalysis of lignin relatively straightforward. Unfortunately, this is
ot the case for the carbohydrate analysis. The spatial correlation
f cellulose with hemicelluloses makes the spectral recovery of
ither component in pure form practically unfeasible without addi-
ional extrinsic information. The carbohydrate analysis is further
omplicated due to the fact that Raman spectra of cellulose and
emicelluloses bear significant similarities. However, the recovery
f the carbohydrate spectrum free of lignin contribution allows us
o quantify and analyze cellulose and hemicelluloses contribution

ore accurately with extrinsic information on those polymers.
The relative spatial distributions of lignin and carbohydrates

ere calculated by direct subtraction of first lignin and then car-
ohydrates from average spectra of the clusters (Fig. 4). The lignin
istribution varies (following an approximate Gaussian distribu-
ion) across the cell wall by as much of a factor of 36 (and
pproximately by factor of 7 for the top cells with no additional
ublayers) while showing highest accumulation in the cell corners
red cluster in Fig. 1b). The carbohydrate distribution is relatively
ess marked and varies by a factor of ∼2 across the wall and it is rel-
tively invariant through the major part of the wall and is reduced
y about ∼40% in the cell corners.

The non-invasive, label-free, extraction-free determination of
he Raman spectra of lignin and carbohydrates yields a rapid and
obust method to analyze the plant cell wall, unlocking structural

nd compositional characteristics at sub-cellular levels. Cellular
pecificity can be used to evaluate different types of cells and tis-
ues as well as the cell response to biotic and abiotic stress. This is
n contrast to wet chemical and spectroscopic methods currently
arked (white box) in Fig. 1b. Lignin content differs by as much as a factor of 36 across
part of the cell wall (see Fig. S1 in supporting information for further information).

employed in cell wall analysis that often provide bulk information
only, thus losing variabilities within and across different cell types.
Carbohydrate spectra can be further decomposed into cellulose and
hemicelluloses spectra with use of extrinsic information.

5. Conclusion

In conclusion, our combined Raman microspectroscopy and
chemometrics analysis has demonstrated the ability to find spa-
tially resolved compositional information of the plant cell wall. The
spectral minimization procedure was  used to recover two spec-
tra that represent the lignin content and the total carbohydrate
content. The ability to recover entire spectrum of lignin which car-
ries vibratiobnal signatures of monolignol units (e.g. Syringyl and
Guacial units) would enable us to extend this procedure to infer
structural information of lignin in situ without chemical or mechan-
ical breakdown of the cell wall. The presented approach is general
such that it can be combined with any multivariate microscopic
method (e.g. IR, mass spectrometry, fluorescence, etc.) to analyze
any natural or artificial image.
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